使用认知心理学解释深度神经网络

发布时间:2017-07-20 16:26:36 | 来源:DeepMind | 作者:机器之心 | 责任编辑:胡俊

 

    论文: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study

    论文地址:https://arxiv.org/abs/1706.08606

 

     摘要:深度神经网络(DNN)在多种复杂任务中具有优势,可以达到超出人类能力的表现。虽然过去的大量研究都旨在增进对于模型本身的理解,但却少有研究将其用于人类认知心理学中问题解释、理论和试验方法。为了探索这些工具的潜在价值,我们在发展心理学中选择了一个完善的分析方法来解释人类儿童如何学习事物的语言标签,同时将这种分析应用到 DNN 中。


     通过使用受到原始认知心理学启发的数据集进行实验,我们找到了在 ImageNet 上迄今为止表现最佳的一次性学习模型,它展示了与人类相似的偏见:偏向于以形状而不是颜色对物体进行分类。这种对形状偏好的量级不仅出现在整体识别中,也出现在子模型里,甚至会在训练时在子模型中产生波动。这些结果证明了认知心理学工具能够揭示 DNN 背后隐藏的计算特性,它同时也为人类学习语言提供了一种计算模型。

1  2  3  4  5  6  7  8  9  10